Properties of the LogNormal distribution
The LogNormal distribution can be characterized by the exponent of its parameters:
- exp(μ): the median
- exp(σ): the multiplicative standard deviation $\sigma^*$.
Function σstar returns the multiplicative standard deviation.
A distribution can be specified by taking the log of median and $\sigma^*$
d = LogNormal(log(2), log(1.2))
σstar(d) == 1.2Alternatively the distribution can be specified by its mean and $\sigma^*$ using type Σstar
d = fit(LogNormal, 2, Σstar(1.2))
(mean(d), σstar(d)) == (2, 1.2)Detailed API
LogNormals.σstar — Methodσstar(d)Get the multiplicative standard deviation of LogNormal distribution d.
Arguments
d: The type of distribution to fit
Examples
d = LogNormal(2,log(1.2))
σstar(d) == 1.2StatsBase.fit — Methodfit(D, mean, σstar)Fit a statistical distribution of type D to mean and multiplicative standard deviation.
Arguments
D: The type of distribution to fitmean: The moments of the distributionσstar::Σstar: The multiplicative standard deviation
Examples
d = fit(LogNormal, 2, Σstar(1.1));
(mean(d), σstar(d)) == (2, 1.1)LogNormals.Σstar — TypeΣstarRepresent the multiplicative standard deviation of a LogNormal distribution.
Supports dispatch of fit. Invoking the type as a function returns its single value.
Examples
a = Σstar(4.2)
a() == 4.2